HOWTO: Combine Multiple PDF Files With Fillable Forms (AcroForms)

Customers frequently use our PdfDocument class to combine multiple PDF files together,
However, if you've ever tried combining two or more PDFs that have PDF fillable forms
(AcroForms) you may have seen this error:

PdfException::{"source pages include multiple AcroForm objects that conflict"}

This is because PDF forms (AcroForms) are a complex mix of form objects and rely on
embedded resources in the containing PDF. There is no way for the combine to merge these
resources and combine two forms. Our PdfDocument component takes a "above all else, do
no harm" approach which means any time an operation would result in loss of data or
fundamental change, it should throw an exception rather than continue.

The intent is to give the programmer a means to gracefully handle the exception. Be that to
gracefully fail or to take corrective action.

In the case of this AcroForm object conflict, there used to be no way to automatically handle
the conflict in a way that would preserve the integrity and intent of the original form. So,
this lead to the question "so, what can be done to successfully combine the PDFs"

Importing Pages With Conflict Resolution

PdfGeneratedDocument now has a new ImportPages feature designed to easily allow for
importing pages from additional external PDFs.

PdfDocument can not combine PDFs where more than one of the documents has AcroForm
elements. The new ImportPages feature of PdfGeneratedDocument includes conflict
resolution events to allow for handling such cases

Quick Example:

rivate voi d MergePdf Wt hFormsConfl i cResol ution(string baseFile, string inportFile, string
outFile) { using (FileStream baseFileStream = new Fi |l eStrean(baseFile, FileMde. pen,

Fi | eAccess. Read, FileShare.Read)) { using (PdfGeneratedDocunment genDoc = new

Pdf Gener at edDocunent (baseFil eStream)) { using (FileStreaminportFileStream = new
FileStream(inportFile, FileMde.Open, FileAccess.Read, FileShare.Read)) {

genDoc. | nport Pages(inportFileStream new InportOptions { //// These are additional options
avail able //Insertlndex = -1, //PagesTolnport = newint[] {1,3,5,7}, //OwerPassword = ""

/] UserPassword = "", //RepairOptions = new Atal asoft. Pdf Doc. Repai r. RepairOptions(), //// This



HOWTO: Combine Multiple PDF Files With Fillable Forms (AcroForms)

option is the key one for nmerging with acroforns conflict resolution

For nFi el dsConf | i ct Handl er = Resol veFornFi el dsConflict }); using (FileStreamoutFileStm = new
FileStrean{outFile, FileMde.Create)) { genDoc. Save(outFileStm; } } } } } /// /l] Exanple
conflict resolution where we'll let the forms just bring in their fields nornally, and only
rename fields if needed /// the renane here is VERY SI MPLE and may not be conpl ex enough (we
just pre-end "new' to the field nane of any conflicting field" /// You could do sonething

i nvol ving random nunbers/letters , GUDetc.. /// [/l I/l private static void

Resol veFor nFi el dsConfl i ct (obj ect sender, ForntieldsConflictEventArgs args) { if

(args. AreFi el dTypesEqual ) { // no conflict really so just let it ride args.ConflictResolution
= FornFi el dsConflict Resul t. KeepCurrent Fi el dAndMer geChi Il dren; } else { // generate new nane
for field args. External Fi el d. Fi el dName = "new' + args. External Fi el d. Fi el dNane;

args. ConflictResol ution = FornFiel dsConflictResult.KeepBoth; } }

Please see attachments for a sample application that implements this solution
(MergePdfFormsExample_v11.0.zip)

Original Workarounds

The following are the original workarounds provided before the conflict resolution was
introduced in 11.0 for PdfFGeneratedDocument. These are still valid methods but will result
in stripping form content/"flattening" forms. For true merging of multiple PDFs with
AcroForm objects, please consider using 11.0 or higher with the new
PdfGeneratedDocument.ImprotPages technique covered above

There is a way forward which involves deliberately stripping out the PDF Fillable form in
such a way that the PDF is no longer interactively fillable but the filled in information is still
present visually.

There are actually two practical approaches - each has slightly different licensing
requirements, and results in slightly different output.

DotPdf (PdfGeneratedDocument)

If you have a license for the Atalasoft "DotPdf" product (a serial nhumber beginning with
PDFG (SDK) or PDFX2 (Server) which provides a license nhamed Atalasoft.PdfDoc.lic)

That solution is to use our PdfGeneratedDocument class to open each PDF and strip the
Form object out. This causes the actual "AcroForm" to no longer be a PDF fillable form, but
leaves the "Widget Annotation" objects on their pages with their existing content.



HOWTO: Combine Multiple PDF Files With Fillable Forms (AcroForms)

You prepare the PDF along these lines:

PdfGeneratedDocument genDoc = new PdfGeneratedDocument (streamWithPdf) ;
genDoc.Form = null;

genDoc.Save (newStreamWithModifiedPdf) ;

You do this for each PDF you'll be combining, then you can use the standard
PdfDocument.Combine(...) to combine the PDFs.

The sample solution PdfForms_DotPdfCombine which is attached to this article demonstrates
first the original error from combining, then using the PdfGeneratedDocument to strip the
forms and then combining the PDFs in this manner.

This specific sample was designed to require only a DotPdf license.

PdfImageSource (DotImage Document Imaging and PdfReader)

An alternative for those who do not have license for DotPdf, but do have licensing for
DotImage Document Imaging and PdfReader is to simply rasterize the PDFs. This will
"flatten" out any annotations present and will provide an image-based PDF of the form as it
currently appears.

Our MergedImageSource can take an array of ImageSource objects (ImageSource[]) so we
open each PDF that is to be merged with PdflImageSource and then pass these in the order
we want them to be in the merged PDF into a MergedIimageSource.

Then, we just need to pass that image source along with a stream which will be saved to
into the PdfEncoder

pdfEncoder.Save (targetStream, mergedImageSource, null);

The sample application PdfForms_PdfReaderCombine implements this with proper
management of streams and ImageSources (keeping track of the streams and sources so
they can be properly closed/disposed when done.



HOWTO: Combine Multiple PDF Files With Fillable Forms (AcroForms)

Original Article:

Q10428 - HOWTO: Combine Multiple PDF Files With Fillable Forms (AcroForms)

Atalasoft Knowledge Base
https://www.atalasoft.com/kb2/KB/50072/HOWTO-Combine-Multiple-PDF-Files-Wit...



https://www.atalasoft.com/kb2/KB/50072/HOWTO-Combine-Multiple-PDF-Files-With-Fillable-Forms-AcroForms

