
Atalasoft provides multiple different viewers, each meeting specific needs, but it can be, at
times, overwhelming to figure out what viewer is needed or may be best

Also, when providing support to you with issues repeated to viewers, it is critical that we
know exactly which viewer is being used as there are many and subtle differences and if we
are thinking you're using viewer X but you are using viewer Y, it will make for a confusing
experience for both you and for support

First we need to categorize very generally: There are different viewers for Windows Forms
(WinForms), WPF, and for Web, and within each of those there are multiple options

Windows Forms Applications

Our Windows Forms viewers are our most mature and also have the biggest selection the
hierarchy is as follows

ThumbnailView

Allows the viewing and navigating (when properly tied to a main viewer (see below) of
multi-page images or multiple separate images via small "thumbnail" images that are
interactive in multiple ways (depending on how you use them) for click navigation,
drag/drop reordering etc..)

FolderThumbnailView

This is a special case of a ThumbnailView. Generally ThumbnailView is used to show and
navigate the multiple pages of a single multi-page document like a TIFF or PDF though it
can be used to present disparate single images as a "virtual single document". But the
FolderThumbnailView is designed to specifically be set to monitor the contents of a single
directory and provide access to the first page of each file as a thumbnail to interact with

ImageViewer

This is the most basic individual image viewer. It can be used to provide access to view a
single frame of a single image. It has lots of tools for things like tracking where the mouse
is on an image, zooming, scrolling etc.. but it is primarily meant only to be used when just

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ThumbnailView.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_FolderThumbnailView.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ImageViewer.htm


viewing... if you will be planning on modifying the image in the viewer with Image
Commands, consider moving up to a "higher level" viewer such as WorkspaceViewer,
AnnotateViewer, DocumentViewer or DocumentAnnotationViewer (see below)

WorkspaceViewer

This is an ImageViewer with extra features geared toward when you plan on applying
various changes and image commands to the image you're working on. The most critical
additions are the ApplyCommand feature and the Undo/Redo capabilities that come with it

With ImageViewer if you wish to apply a change to the image, you would need to directly
manipulate the AtalaImage object exposed by viewer.Image and then replace viewer.Image
with the new one and viewer.Refresh(); The process might go like this:

f (imageViewer1.Image != null) { RotateCommand rotate = new RotateCommand(90); AtalaImage

updatedImage = rotate.Apply(imageViewer1.Image).Image; if (!rotate.InPlaceProcessing) {

imageViewer1.Image.Dispose(); } imageViewer1.Image = updatedImage; imageViewer1.Refresh(); }

To do the same with WorkspaceViewer, the same operation is just:

f (workspaceViewer1.Image != null) { RotateCommand rotate = new RotateCommand(90);

WorkspaceViewer1.ApplyCommand(rotate, "optional Undo/redo caption here"); }

WorkspaceViewer also adds a concept of WorkspaceViewer.Images which is an
ImageCollection.

However, PLEASE DO NOT USE EITHER

Long story short: the Open method when provided with a multi-page document such as PDF
or TIFF will open all frames in the internal Images ImageCollection. This is very convenient
for developers, but long history has shown that it's incredibly bad in terms of memory
management. Each AtalaImage object needs a contiguous block of memory Height (pixels)
* Width (pixels) * BitDepth (1, 4, 8, 16, 24, 32, 64 based on PixelFormat) That contiguous
block is inefficient and can lead to "badly played game of Tetris" in your application's
memory space - in 32 bit apps this causes frequent issues with
System.OutOfMemoryException.

Best practice is NOT to use WorkspaceViewer.Images or WorkspaceViewer.Open() and

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_ImageProcessing_ImageCommand.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_ImageProcessing_ImageCommand.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_WorkspaceViewer.htm


instead work with ApplyCommand() and directly with WorkspaceViewer.Image only.. or if
you need to use Open on multi-page documents, consider using DocumentViewer or
DocumentAnnotationViewer depending on if you need annotations or not. (this also
applies to AnnotateViewer)

AnnotateViewer

AnnotateViewer is a WorkspaceViewer which incorporates an AnnotationController and
implements our Annotations framework to allow for drawing, viewing, burning, and
manipulating Atalasoft Annotations.

Since AnnotateViewer uses WorkspaceViewer "under the hood" it also has the concept
of WorkspaceViewer.Images which is an ImageCollection.

However, just as with WorkspaceViewer, PLEASE DO NOT USE EITHER

Long story short: the Open method when provided with a multi-page document such as PDF
or TIFF will open all frames in the internal Images ImageCollection. This is very convenient
for developers, but long history has shown that it's incredibly bad in terms of memory
management. Each AtalaImage object needs a contiguous block of memory Height (pixels)
* Width (pixels) * BitDepth (1, 4, 8, 16, 24, 32, 64 based on PixelFormat) That contiguous
block is inefficient and can lead to "badly played game of Tetris" in your application's
memory space - in 32 bit apps this causes frequent issues with
System.OutOfMemoryException.

Best practice is NOT to use AnnotateViewer.Images or AnnotateViewer.Open() and
instead work with ApplyCommand() and directly with AnnotateViewer.Image only.. or if
you need to use Open on multi-page documents, consider using DocumentViewer or
DocumentAnnotationViewer depending on if you need annotations or not. (this also
applies to WorkspaceViewer)

DocumentViewer

Generally, its rare indeed to use the ImageViewer / WorkspaceViewer /
AnnotateViewer which show a single page in full size alone without a ThumbnailView to
navigate (though it's not impossible). However, the aforementioned viewer controls can
allow for some very seriously unsustainable memory usage. Internally if you use these

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_UI_AnnotateViewer.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_UI_AnnotationController.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/M_Atalasoft_Imaging_WinControls_WorkspaceViewer_ApplyCommand_1.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_DocumentViewer.htm


viewers included Open methods (see the lengthy warnings above in WorkspaceViewer and
AnnotateViewer descriptions for details).

DocumentViewer is a CustomControl where we've taken a SplitContainer and placed a
ThumbnailView in one pane and a WorkspaceViewer in the other. We also have
implemented a large amount of glue code to ensure best practices for memory
management, so that when you use DocumentViewer, you can use its
DocumentViewer.Open() method to open multi-page documents with large numbers of
pages and not cause System.OutOfMemoryException

The "cost" to this is that we also somewhat "welded the hood shut". DocumentViewer
exposes ThumbnailControlProperties in its DocumentViewer.ThumbnailControl and
exposes the underlying ImageControlProperties under DocumentViewer.ImageControl.
However, it is critical to understand that you are getting access only to properties and not
the individual underlying viewer events. This is done deliberately to avoid interfering with
the "glue code" we use to implement the best practices memory management. There are
some tasks which are possible with a ThumbnailView and WorkspaceViewer
independently which are not readily available using DocumentViewer. There is a way to
"dig in" and "extract the underlying controls" so you can tie in to these hidden events and
methods and properties. If you find that you really want to use DocumentViewer except
this one or two events are making it so you're considering backing down to separate
controls, please stop and consider creating a support case to ask for our assistance. We may
be able to help with the "secret sauce" but you will need to hear us tell you why what we're
about to show you is "at your own risk".

DocumentAnnotationViewer

As you've probably guessed, DocumentAnnotationViewer is DocumentViewer but
instead of WorkspaceViewer, we use AnnotateViewer so that you get a combined
control that has thumbnails, image viewing and processing AND annotation support. This is
our flagship WinForms viewer control.

Like DocumentViewer, in DocumentAnnotationViewer, the "cost" to this is that we also
somewhat "welded the hood shut". DocumentAnnotationViewer exposes
ThumbnailControlProperties in its DocumentAnnotationViewer.ThumbnailControl and
exposes the underlying ImageControlProperties under
DocumentAnnotationViewer.ImageControl. And
under DocumentAnnotationViewer.Annotations, you will find access to the

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ThumbnailControlProperties.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ImageControlProperties.htm
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_UI_DocumentAnnotationViewer.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ThumbnailControlProperties.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WinControls_ImageControlProperties.htm


AnnotationController used by the AnnotateViewer embedded within.

In addition to the other issues described with regard to these property accessors
in DocumentViewer above, you need to be aware that the way
DocumentAnnotationViewer works is that the current DocumentViewer.Annotations
consist only of the single Layer for the currently selected page in the
DocumentAnnotationViewer. As you change pages using the ThumbnailView or
DocumentAnnotationViewer.SelectThumbnail() method, the AnnotationController current
layer is cached and the new page's layer is loaded.

Strategies for how to iterate all images / annotations can get a little complicated but the
excellent AdvancedScanToFile sample application does a great job of providing an example
of how to work with this.

As with DocumentViewer, if you find yourself fighting with the control because there are
one or two events, properties or methods missing that are making it so you're considering
backing down to separate controls, please stop and consider creating a support case to ask
for our assistance. We may be able to help with the "secret sauce" but you will need to hear
us tell you why what we're about to show you is "at your own risk".

WPF Applications

First, a short note: We do not have any form of ThumbnailView class for WPF the way we do
for WinForms. There is an article on how you may wish to "roll your own" - it is provided as
a convenience as-is but there is no supported WpfThumbnailView in Atalasoft

AtalaImageViewer (WPF Image Viewer)

This is (similar to WorkspaceViewer above) the WPF single Image viewer control. It most
closely resembles WorkspaceViewer on the WinForms side. We have a really helpful
sample application: WpfDemo

AtalaAnnotationViewer (WPF Annotation Viewer)

This is (similar to AnnotateViewer above) the WPF Single Image viewer control with
Annotation Support. We have a really helpful sample application: WPF Annotations Demo

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_UI_AnnotationController.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_UI_LayerAnnotation.htm
https://www.atalasupport.net/demos/LegacyDemos-11.4/AdvancedScanToFile.zip
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://www.atalasoft.com/Support/my-portal/Cases/Create-Case
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_Wpf_AtalaImageViewer.htm
https://www.atalasupport.net/demos/LegacyDemos-11.4/WpfDemo.zip
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Annotate_Wpf_AtalaAnnotationViewer.htm
https://www.atalasupport.net/demos/LegacyDemos-11.4/WpfAnnotations.zip
https://www.atalasupport.net/demos/LegacyDemos-11.4/WpfAnnotations.zip
https://www.atalasupport.net/demos/LegacyDemos-11.4/WpfAnnotations.zip


Web Applications

Modern HTML5

We need to differentiate first.. what do we mean by "Modern HTML5"

Basically, Older web development with Microsoft was using WebForms. This is a technology
that has grown very long in the tooth. It was useful in getting many great apps developed
and working but it's not kept up well with modern standards and needs. By comparison, our
"Modern HTML5" controls are redesigned from the ground up to be more responsive (or at
least be able to be used in a responsive app given a bit of correct CSS magic), use "Lazy
Loading" and implement "continuous scrolling" while being compatible with modern HTML,
CSS and jQuery standards. Furthermore, our "Modern HTML5" controls can be used in new
.NET 6 Web applications (MS does not plan on implementing WebForms in .NET Core (.NET
6 and up)

These modern controls rely on WebDocumentRequestHandler (derived from ASHX Generic
Handler) for .NET Framework implementation, or WebDocumentViewerCallbacks middleware
for .NET 6 for the back end . They use Ajax requests with JSON payloads to communicate
with the server back end, and are fully asynchronous. These controls CAN NOT be used in
"headless" (client only) applications, they require being hosted on a working IIS server back
end.

You MUST NOT cause postback to any page containing these viewers - they function as
Single Page Application (SPA) type design.

WebDocumentViewer

This is a standalone web viewer that uses Continuous scrolling (horizontal or vertical
configurable) and Lazy Loading to avoid memory issues. It has support for Annotations,
viewing, insert, delete, reorder pages and even some operations such as rotation built in. It
can also be configured to work in "single page mode" if you want to simulate the legacy
controllers feel.

Please see:

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_WebDocumentRequestHandler.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_Core_WebDocumentViewerCallbacks.htm
https://atalasoft.github.io/web-document-viewer/


INFO: WebDocumentViewer Whitepaper - Getting Started With Web Viewing

INFO:WDV (and WebCapture) In .NET 6 (.NET Core) Whitepaper - Getting Started

WebDocumentThumbnailer

Unlike the legacy viewers where the WebImageViewer / WebAnnotationViewer (see
below) are single image and pretty much must be used with a WebThumbnailViewer (again,
see below), WebDocumentViewer can work completely on its own using continuous
scrolling, but can be optionally tied to a WebDocumentThumbnailer (and in fact you can
even tie a single WebDocumentViewer to multiple WebDocumentThumbnailer viewers
so that whichever thumb viewer is active is controlling the main viewer.

However, this is optional you do not need to use this control

It is actually a special case of a WebDocumentViewer

Using the two together requires a bit of understanding of how they interact (example: when
you have just a WebDocumentViewer you would use its openUrl(..) method to open a
new document, but if you;re working with tied viewers, you would actually use
WebDocumentThumbnailer.openUrl() to open the image and let the tied viewer just
handle it. But if you want to save annotations, you'd do that from the WebDocumentViewer
and not from the thumbnail viewer etc.. It takes a bit of getting used to.

Legacy Web Controls (do not use for new projects)

As already mentioned above, "Legacy Controls" are for the old and deprecated WebForms
development that had its heyday a decade ago.

Atalasoft still maintains these controls for critical bug fixes, but we are not adding any new
features and eventually, these controls will be retired.

It is strongly advised that no new development be done with these controls, (we understand
that maintenance and continued support may be required and we'll continue to support
them as long as it is possible). Customers are strongly encouraged to consider migrating to
the modern HTML 5 controls detailed above at their earliest opportunity.

INFO: Explaining our Different Viewer Controls

https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/KB2/KB/50370/INFO-WebDocumentViewer-Whitepaper-Getting-Started-With-Web-Viewing
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://www.atalasoft.com/kb2/KB/50410/INFOWDV-and-WebCapture-In-NET-6-NET-Core-Whitepaper-Getting-Started
https://atalasoft.github.io/web-document-viewer/Atalasoft.Controls.WebDocumentThumbnailer.html


The WebImageViewer and WebAnnotationViewer use special custom Ajax requests
called "Remote Invoke" and special server side attribute methods [RemoteInvokable] for
handling in the code-behind. You MUST NOT cause postback to any page containing these
viewers - they function as Single Page Application (SPA) type design.

WebThumbnailViewer

Since the WebImageViewer and WebAnnotationViewer (see more below) are single
image only controls, they are pretty much useless without a WebThumbnailViewer to use
for navigation. Thus, you will almost never be using one of those without also using a
WebThumbnailViewer.

WebImageViewer

This is a single image image viewer for WebForms, It relies on a WebThumbnailViewer for
page navigation. It uses a concept called "RemoteInvoke" to make server side calls to
code-behind.

WebAnnotationViewer

This is basically a WebImageViewer (as described above) with added
WebAnnotationController added to it

Additional Reading

FAQ: Support for ASP.NET Core / .NET Core / .NET 5 / .NET 6

Atalasoft Knowledge Base
https://www.atalasoft.com/kb2/KB/50426/INFO-Explaining-our-Different-Viewer...

INFO: Explaining our Different Viewer Controls

https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_RemoteInvokable.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_WebThumbnailViewer.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_WebImageViewer.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_RemoteInvokable.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_Annotations_WebAnnotationViewer.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.4.0-n632p3l96b/help/DotImage/html/T_Atalasoft_Imaging_WebControls_Annotations_WebAnnotationController.htm
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/KB2/KB/50005/FAQ-Support-for-ASPNET-Core-NET-Core
https://www.atalasoft.com/kb2/KB/50426/INFO-Explaining-our-Different-Viewer-Controls

